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Abstract
We have formulated a model of an equation that governs dynamics of nonlinear
waves in many non-equilibrium systems. Based on this new equation, we
have reviewed the well-known Lange and Newell’s criterion for modulational
instability of Stoke waves. Some exact solutions of this wave equation have
also been found through a proper combination of the Painlevé analysis and
Hirota’s bilinear technique.

PACS numbers: 02.30.Ik, 03.75.Lm

1. Introduction

Recent developments in mathematical physics enable us to find solutions of nonlinear
equations which appear in various fields of physics. Those solutions play important roles in
understanding the fundamental properties of physical systems [1]. Thus several mathematical
models have been proposed for the theoretical treatment of nonlinear wave propagation in one,
two- and three-dimensional media. For instance, we consider physical systems described by
the quintic complex Ginzburg–Landau equation (QCGLE) [2, 3]

iUt + PUxx = Q1|U |2U + Q2|U |4U + iγU (1)

in which U(x, t) represents the complex wave amplitude of the phenomenon under
examination, subscripts t and x stand for partial derivatives and i2 = −1. The QCGLE
is of interest in many branches of physics. It is a one-dimensional model for large-scale
behaviour of many non-equilibrium pattern-forming systems [4]. Relation (1) is also used as
an envelope equation for describing a weakly subcritical bifurcation to counter-propagating
4 Present address: PO Box 1927, Yaoundé, Cameroon.
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waves [5]. Moreover, the QCGLE also accounts for the slow modulations of an oscillatory
mode close to a subcritical bifurcation when Q1i > 0,Q2i < 0 and γ = 0 [6]. Although this
equation has been the subject of intensive numerical investigations [7], it should be stressed
that only a few works seeking its analytical solutions have been done [3].

We shall mention that the exact form of the QCGLE that represents a given physical
process is obtained by a balance of various contributing factors under specified conditions.
Here we thought that it would be of great interest, at least for the sake of comparison, to
generalize equation (1) in order to allow it to describe physical systems in which many of the
contributing factors are simultaneously operating. Owing to these, we introduce in this paper
a modified form of the QCGLE, i.e.,

iUt + PUxx = Q1|U |2U + Q2|U |4U + C(UxU
∗
x /U ∗) + iγU. (2)

This equation is henceforth called the modified quintic complex Ginzburg–Landau equation
(MQCGLE). In equation (2), parameters P,Q1,Q2, C and γ are constants that shall be treated
as complex quantities for the sake of generality. Then many types of dispersive and dissipative
effects are included in this equation.

The MQCGLE is rather general as it includes dispersive and nonlinear effects in both
conservative and dissipative forms. Indeed, it contains the well-known complex Ginzburg–
Landau equation (CGLE) (case where Q2, C = 0 and γ is real) which possesses a large range
of applications describing phase transitions and wave propagation in many non-equilibrium
systems [8]. When Q2 = 0, equation (2) becomes the modified CGLE that governs wave
propagation and describes the development of unstable waves in non-equilibrium systems [9].
Equation (2) can be used to study the Benjamin–Feir turbulence in convective binary fluid
mixtures near the critical point since it contains at least the quintic nonlinear term whose
existence was predicted by Brand et al [10], the C factor term will reveal the contribution of
other unknown phenomena which deal with the system.

It is important to note that equation (2) differs from the previously existing forms of the
QCGLE mainly by the C factor term which was absent in the earlier works. Let us mention that
this term, which is mathematically nonlinear, becomes under the geometrical-optics ansatz
∂/∂x → ik and ∂/∂t → −iω a linear term in the resulting dispersion relation. Thus despite
its nonlinear form, this term reduces the nonlinear effects reinforced in the system by the
presence of the quintic term.

This paper is outlined as follows. In section 2, the modulational instability (stability) is
investigated. A new criterion is expected. In section 3, we look for some exact solutions of
the MQCGLE. The last section is devoted to discussions and concluding remarks.

2. Modulational instability

Many nonlinear systems exhibit an instability that leads to the self-induced modulation of
an input plane wave with the subsequent generation of localized pulses [11]. Well known
as modulational instability, this phenomenon is responsible for various physical interesting
effects such as the formation of envelope solitons in electrical transmission lines [12, 13],
nonlinear optical fibres [14], dielectric media [15] and cavitons in plasma [16] as well as the
filamentation of laser beams [17] and the break-up of monochromatic ocean waves [18]. More
recently, the first experimental observation of the modulational instability was reported by Tai
et al [19] using single-mode fibres. They showed how this phenomenon can be exploited to
generate a soliton train at high repetition rate.

Thus, it becomes of interest to find under which conditions isolated pulses could be formed
during the evolution of the wave in the system. So, to analyse the modulational instability in
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the framework of the MQCGLE, we consider a first-order perturbation of an harmonic wave
[20, 21] and research the conditions of stability (instability). The MQCGLE admits travelling
wave solutions

U(x, t) = U0 exp[i(kx − ωt)] (3)

provided the nonlinear dispersion relation

ω = ω(k, |U0|2) = (P + C)k2 + Q1|U0|2 + Q2|U0|4 + iγ (4)

is satisfied. We refer to U0, k and ω, respectively as the complex amplitude, the wavenumber
and the angular frequency of (3). The linear stability of the nonlinear plane wave can be
examined by looking for solutions in the form [21, 22]

U(x, t) = [1 + B(x, t)]U0 exp[i(kx − ωt)] (5)

where the complex quantity B(x, t) is assumed to be small in comparison with the amplitude
of the carrier. After substitution of (5) into equation (2), we linearize the result with respect
to B(x, t) and obtain the evolution equation for the perturbation

iBτ + P(Bxx + 2ikBx) = Q1(B + B∗)|U0|2 + 2Q2(B + B∗)|U0|4 − ikCBx (6)

in which B∗ is the complex conjugate of B. Solution of equation (6) can be taken as

B(x, t) = B1 exp[i(lx + �t)] + B∗
2 exp[−i(lx + �∗t)]. (7)

In relation (7), B1 and B2 are complex constant amplitudes; � and l represent respectively the
angular frequency and the wavenumber of the perturbation. Insertion of (7) into equation (6)
results in a linear homogeneous system for B1 and B2:{

(� + y + r)B1 + yB2 = 0
zB1 + (� + s + z)B2 = 0

(8)

with
y = Q1|U0|2 + 2Q2|U0|4 r = P(l2 + 2kl) + klC

z = −Q∗
1|U0|2 − 2Q∗

2|U0|4 s = P ∗(−l2 + 2kl) + klC∗.
(9)

System (8) has non-trivial solutions if the frequency � obeys the relation

�2 + b� + e = 0 (10)

wherein b = s + r + y + z and e = rs + rz + ys.

At this level, expression (4) is utilized to better write the discriminant (delta) of (10)
which takes the form

� = X1 + iY1 (11)

with

X1 = 2l2(PrQ1r + PiQ1i )|U0|2 + 4l2(PrQ2r + PiQ2i )|U0|4 + l4P 2
r − k2l2C2

i

− 4Q2
2i |U0|8 − 2l2k2P 2

i − Q2
1i |U0|4 + 4k2l2

(
P 2

i + C2
i

) − 4k2l2(Pi + Ci)
2

Y1 = 4kl3PrPi + 8lkPiQ2r |U0|4 + 4lkPiQ1r |U0|2 + 2kl3PrCi

+ 2lkCiQ1r |U0|2 + 4lkCiQ2r |U0|4.
Solutions of equation (10) are the following complex parameters:

�1 = α + iβ + (X1 + iY1)
1/2 and �2 = α + iβ − (X1 + iY1)

1/2 (12)

in which

α = −kl(Cr + 2Pr) and β = (k2 − l2)Pi + k2Ci + γr − Q2i |U0|4. (13)

Here, two cases are possible related each to the sign of Y1. So when Y1 < 0, the roots of �

(i.e., h1 and h2) help to write explicitly frequencies �1 and �2

�1 = α + iβ + h1 − ih2 = (α + h1) + i(β − h2) (14)

�2 = α + iβ − h1 + ih2 = (α − h1) + i(β + h2) (15)
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with

h1 =
√

1
2

(
X1 +

√
X2

1 + Y 2
1

)
and h2 =

√
1
2

(−X1 +
√

X2
1 + Y 2

1

)
.

In the case where Y1 > 0, calculations yield the frequencies

�̃1 = α + iβ − h1 − ih2 = (α − h1) + i(β − h2)

�̃2 = α + iβ + h1 + ih2 = (α + h1) + i(β + h2)
(16)

and lead to solutions which have the same asymptotic behaviour as those derived from (14)
and (15).

Since the frequencies �1 and �2 are complex quantities, it is not obvious how to specify
their sign. But their imaginary parts contribute to increase the effects of perturbation in the
system. Substitution of (14) into relation (7) permits us to understand the behaviour of B(x, t).
Because h2 is always positive, β − h2 < β + h2 holds and then this behaviour is the function
of the sign of β − h2 which represents the imaginary part of �1. Indeed, we have

B1 ei�t = B1 ei�1t = B1 ei(α+h1)t e−(β−h2)t = B1 ei(α+h1)t e(h2−β)t .

Hence, it becomes clear that the asymptotic behaviour of (7) is related to the sign of the
constant β − h2.

If β < 0, then the quantity h2 − β is always greater than zero and solution (7) increases
exponentially when t tends to infinity. The system remains unstable under the modulation.
But if β > 0, the behaviour of (7) will depend on the sign of h2 − β. Two cases appear:

when h2 − β > 0 i.e. Im(�1) < 0 (17)

solution (7) diverges without limit as t increases and the system is said to be modulationally
unstable. Therefore, the difference β − h2 can be written as

β − h2 = β − {
1
2

[−2l2(PrQ1r + PiQ1i )|U0|2 − 4l2(PrQ2r + PiQ2i )|U0|4

− l4P 2
r − 4k2l2(P 2

i + C2
i

)
+ X2

]}1/2

with

X2 = k2l2C2
i + 4Q2

2i |U0|8 + 2l2k2P 2
i + Q2

1i |U0|4 + 4k2l2(Pi + Ci)
2 +

(
X2

1 + Y 2
1

)1/2
.

The quantity X2 is a positive constant. Hence, we have

β − h2 � β − {
1
2

[−2l2(PrQ1r + PiQ1i )|U0|2 − 4l2(PrQ2r + PiQ2i )|U0|4

− l4P 2
r − 4k2l2(P 2

i + C2
i

)]}1/2
.

It should be noted that the inequality Im(�1) < 0 is satisfied as soon as

β − {
1
2

[−2l2(PrQ1r + PiQ1i )|U0|2 − l4P 2
r − 4k2l2

(
P 2

i + C2
i

)
+ r0

]}1/2
< 0 (18)

with

r0 = −4l2(PrQ2r + PiQ2i )|U0|4.
Because β is positive, the arrangements of (18) lead to

(PrQ1r + PiQ1i ) − r < −
(

2β2 + l4P 2
r + 4k2l2

(
P 2

i + C2
i

)
2l2|U0|2

)
< 0 (19)

and necessarily

(PrQ1r + PiQ1i ) − r < 0 (20)



Modulational instability and exact solutions of the modified quintic complex Ginzburg–Landau equation 1731

with r defined by

r = r0

2l2|U0|2 = −2(PrQ2r + PiQ2i )|U0|2. (21)

Expression (20) is the modulational instability criterion for Stokes waves in physical systems
in which the MQCGLE holds. Moreover, this relation fulfils the well-known Lange and
Newell’s criterion [23]. Dealing with the work of these authors, it should be recalled that
sinusoidal waves are subcritical (i.e., stable) for PrQ1r + PiQ1i > 0 and are supercritical (i.e.,
unstable) for PrQ1r + PiQ1i < 0.

To continue, we deduce from (20) that if r > 0, all supercritical waves are unstable under
the modulation and subcritical waves with r > (PrQ1r + PiQ1i ) > 0 are also unstable.

On the other hand, previous calculations are exploited to establish from the condition
β − h2 > 0 (i.e. Im(�1) > 0)

that

(PrQ1r + PiQ1i ) − r > 0. (22)

This result means that Stokes waves which verify (22) are stable under modulation. We
get from (22) that if r < 0, all subcritical waves are stable and supercritical waves with
r < (PrQ1r + PiQ1i ) < 0 are also stable under the modulation.

Let us examine the limiting case where the constraints Pi = Q1i = Q2i = 0 and
C = γ = 0 act. Now, equation (2) becomes the cubic–quintic nonlinear Schrödinger
equation [24] given by

iUt + PrUxx = Q1r |U |2U + Q2r |U |4U (23)

and relations (19)–(21) lead to

PrQ1r − r2 < −
(

l2P 2
r

2|U0|2
)

< 0

and necessarily

PrQ1r − r2 < 0 with r2 = −2PrQ2r |U0|2.
It can be mentioned explicitly that equation (23) governs the propagation of light beams in an
inhomogeneous medium when the nonlinear polarization contains susceptibilities of third and
fifth order [25], and also describes the boson gas with two- and three-body interactions [26].
This last result means that the present study also includes physical systems described by the
cubic–quintic nonlinear Schrödinger equation and its derivative forms.

3. Exact solutions

The study made in the previous section presents the asymptotic behaviour of Stoke wave’s
solutions of equation (2). Indeed, it stresses the condition for which envelope solitons can be
generated from the evolution of plane waves in the system. Knowing that systems described
by equation (2) can support envelope solitons, we think it is good to fulfil out investigation
by seeking some exact solutions of the MQCGLE. The presence of the quintic nonlinear term
within this equation allows us to introduce a method based on the association of the Painlevé
test theory and Hirota’s bilinear technique [27, 28]. For this purpose, we start by rewriting
equation (2) as

iUt + PUxx = Q1U
2V + Q2U

3V 2 + C(UxVx/V ) + iγU (24a)

−iVt + P ∗Vxx = Q∗
1V

2U + Q∗
2V

3U 2 + C∗(UxVx/U) − iγ ∗V (24b)
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where the asterisk denotes the complex conjugation. In the following analysis, U and V are
assumed to be independent quantities. To obtain some exact solutions of equations (24), the
modified Hirota’s ansatz

U = G ei(Kx−�t)

F
1
2 +iα

V = H e−i(Kx−�t)

F
1
2 −iα

(25)

are adopted; K, �, α and F(x, t) are considered as real. Expressions (25) are deduced from
the truncation of the Puiseux expansions at the lowest level [29]. The report of relations (25)
into equations (24) results in the set of equations below.(

F

Q2G

)
{iDα,t + 2iKPDα,x + PD2

α,x + � − (P + C)K2 − λ}(GF) − α̂

4
FFxx

+

(
CF

Q2GH

) {
2KF Im(GHx) + 2Fx Re

[(
1

2
+ iα

)
GHx

]
− FGxHx

}

−
(

1

4
+ α2

)
C

Q2
F 2

x =
{
α̂D2

0,x +
(iγ − λ)

Q2
+

Q1

Q2
GH + G2H 2

}
(FF ) (26a)

(
F

Q∗
2H

){−iD∗
α,t − 2iKP∗D∗

α,x + P ∗D∗2
α,x + � − (P ∗ + C∗)K2 − λ∗}(HF) − α̂∗

4
FFxx

+

(
C∗F

Q∗
2GH

) {
2KF Im(GxH) + 2Fx Re

[(
1

2
− iα

)
GxH

]
− FGxHx

}

−
(

1

4
+ α2

)
C∗

Q∗
2

F 2
x =

{
α̂∗D2

0,x +
(−iγ ∗ − λ∗)

Q∗
2

+
Q∗

1

Q∗
2

GH + G2H 2

}
(FF ).

(26b)

In expressions (26), we have put α̂ = (
1
2 + iα

)(
3
2 + iα

)
P/Q2 and the modified bilinear operator

Dα,x is defined by

Dα,x(GF) =
{[

∂

∂x
−

(
1

2
+ iα

)
∂

∂x ′

]
G(x)F (x′)

}
x=x ′

.

Leaning on the idea introduced by Nozaki and Bekki [30], the complex constant λ and α are
calculated so that the right-hand sides of equations (26) become real. Hence, those parameters
are subjected to the constraints α = β ± (β2 + 3/4)1/2;Q2r (λi − γr) = Q2i (λr + γi) and
β = PrQ2r + PiQ2i/PiQ2r − PrQ2i = Re(P/Q2)/Im(P/Q2).

Equations (26) can be solved and its solutions may depend on the conditions applied on
the parameters K, � as well as on the expansions chosen for the functions F, G and H. Thus
we will find possible bright soliton solutions of equations (26) by setting K = � = 0 and
considering the general forms [29]

U = a eθ

[1 + eθ+θ∗ ]
1
2 +iα

V = b eθ∗

[1 + eθ+θ∗ ]
1
2 −iα

(27)

with θ = kx−ωt where k and ω are complex constants. By substituting (27) into equations (24)
and solving the resultant set of equations for the coefficients a, b, k and ω, we obtain

ab = 2kr

√
Z ab > 0

ki = 1

A0
[2(1 + 4α2)Pr − (Cr + 2αCi)]kr +

1

A0
(Q1r + 2αQ1i )

√
Z = ekr + d

ωr = [(1 − e2)Pi + 2ePr − (1 + e2)Ci]k
2
r + 2d[Pr − e(Pi + Ci)]kr − [γr + (Pi + Ci)d

2]

ωi = [(e2 − 1)Pr + 2ePi + (e2 + 1)Cr ]k2
r + 2d[Pi + e(Pr + Cr)]kr − [γi − (Pr + Cr)d

2]

kr = A1 ±
√

A2
1 + B1

(28)
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with

A0 = (1 + 4α2)Pi + 2α(Cr + 2αCi) A1 = �2d(2α − e)(Pi + Ci) − Q1i

√
Z�/A2

B1 = [−(Pi + Ci)d
2 − γr ]/A2 A2 = (e2 − 4αe)(Pi + Ci) + 8αPr + 3Pi − Ci

and

Z = 1

|Q2|2
[(

3

4
− α2

)
(PrQ2r + PiQ2i ) − 2α(PiQ2r − PrQ2i )

−
(

1

4
+ α2

)
(CrQ2r + CiQ2i )

]
(29)

wherein the subscripts r and i denote real and imaginary quantities. From relation (28), it
appears that Z should always be taken positive so that ab > 0 by making an appropriate choice
of the branch of α. This bright soliton solution arises from a suitable compensation between
the nonlinear and dispersive effects in the system. Moreover, solution (27) can be used to
ensure the wave propagation in all systems from which equation (2) is derived. Unfortunately,
we cannot get two or more envelope solitons since Hirota’s method includes the asymmetric
bilinear operators Dα,x, . . . [29, 30].

When K,� �= 0, we look for shock-type wave solutions of equations (26) by considering
the general forms [29]

U = a ei(Kx−�t)

[1 + e−2µ(x−ηt)]
1
2 +iα

V = b e−i(Kx−�t)

[1 + e−2µ(x−ηt)]
1
2 −iα

. (30)

By direct substitutions we obtain all the unknown parameters of (30). Indeed, ansatz (30)
satisfies equations (24) if

ab = 2µ
√

Z1 ab > 0

K = − 1

A0
[(1 + 4α2)Pr + 4(Q2r + 2αQ2i )Z1]µ − 1

A0
(Q1r + 2αQ1i ))

√
Z1 = σµ + δ

η = 4

[(
α +

σ

2

)
Pr −

(
α2 + ασ − 1

4

)
Pi − Q2iZ1 +

(
α2 + ασ +

1

4

)
Ci

]
µ

+ 2δ(Pr − 2αPi) − 2Q1i

√
Z1 − 4αCiδ

� = [(Pr + Cr)σ
2 + 4Q2rZ1]µ2 + 2�δσ (Pr + Cr) + Q1r

√
Z1�µ + [γi + (Pr + Cr)δ]

µ = A3 ±
√

A2
3 + B2 (31)

with

A3 = �−(Pi + Ci)σδ − Q1i

√
Z1�/�(Pi + Ci)σ

2 + 4Q2i

√
Z1�

B2 = [γr − (Pi + Ci)δ
2]/�(Pi + Ci)σ

2 + 4Q2i

√
Z1�

and Z1 = −Z where Z is defined by equation (29). By taking an appropriate branch of α, we
can make Z negative so that ab > 0. This shock-type solution (30) is generally a consequence
of an overall balance among nonlinear and dispersive effects in the system when the former
are greater than the latter. Moreover, this special solution can be utilized to describe pattern
formation and/or study spatiotemporal transitions from coherent structures to chaotic states
in physical systems in which the MQCGLE holds.

4. Conclusion

In this paper, a new wave equation (named the MQCGLE) has been formulated to describe
dynamics of nonlinear waves in non-equilibrium systems. Examining the properties of this
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equation, we have not been able to derive any constant of motion attached to the MQCGLE
although it is not certain that no more exist. This situation is quite understood since we know
that the conventional CGLE, which is much simpler than equation (2), has no constant of
motion.

Owing to a suite combination of the Painlevé analysis and Hirota’s bilinear technique,
some exact solutions (bright soliton and shock-type wave) of this new equation have been
found. These solutions can be used to ensure the wave propagation, pattern formation and/or
spatiotemporal transitions to chaos in the framework of the MQCGLE. Therefore, these
solutions are of interest for a better understanding of the behaviour of the concerned nonlinear
physical process and can thereby participate in the enhancement of the nonlinear fields.

Furthermore, it can be demonstrated that the known solutions of the limiting cases of the
QCGLE can be recovered by taking the appropriate limit of the present solutions. In fact,
when C, γ = 0, relations (27) and (30) lead respectively to the pulse and front solutions of
the QCGLE obtained by Marcq et al [3].

On the other hand, we have exploited the Stoke wave analysis to built a result that gives the
Lange and Newell’s criterion for modulational instability (stability) of plane waves. We have
obtained that this new criterion depends on the sign of the quantity [(PrQ1r + PiQ1i ) − r] in
which r represents the corrective term. For the sake of comparison, the modulational instability
criterion (20) established in this work is quite similar to that obtained by Descalzi et al during
their study of thermodynamic potentials for non-equilibrium systems [31]. Furthermore, result
(20) is interesting because the present approach to its investigation is very different from the
method based on the Lyapunov functional developed by Descalzi et al [31] and also from the
method of cumulative momentum used by Lange and Newell [23].

Finally, since the existence of thermodynamic potentials is of fundamental importance
in the macroscopic description of some physical systems, equation (2) can be exploited as
a basic model to determine the thermodynamic potential for some class of non-equilibrium
systems such as Descalzi et al [31] did, and the contribution of the term of factor C will surely
appear as a correction of the known results. It will also be of immense interest to appreciate
the contribution of this term in the nonlinear Kuramoto–Sivashinsky phase equation which
describes the weak turbulence dynamics of the extremum of the set of Lyapunov functionals
associated with the MQCGLE.
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